Cycles within specified distance from each vertex

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing directed cycles through a specified vertex set

A seminal result of Reed et al. [15] in 1996 states that the Erdős-Pósa property holds for directed cycles, i.e. for every integer n there is an integer t such that every directed graph G has n pairwise vertex disjoint directed cycles or contains a set T ⊆ V (G) of at most t vertices such that G−T contains no directed cycle. In this paper, we consider the Erdős-Pósa property for directed cycles...

متن کامل

Vertex-Disjoint Cycles Containing Specified Vertices in a Graph

Let k ≥ 2 and n ≥ 1 be integers, and let G be a graph of order n with minimum degree at least k + 1 . Let v1, v2, . . . vk be k distinct vertices of G , and suppose that there exist vertex-disjoint cycles C1, C2, . . . , Ck in G such that ∑k i=1 |V (C i)| ≥ 399 100 k and vi ∈ V (Ci) for each 1 ≤ i ≤ k . Suppose further that the minimum value of the sum of the degrees of two nonadjacent distinct...

متن کامل

Vertex-disjoint cycles containing specified edges in a bipartite graph

Dirac and Ore-type degree conditions are given for a bipartite graph to contain vertex disjoint cycles each of which contains a previously specified edge. This solves a conjecture of Wang in [6].

متن کامل

A 2-factor in which each cycle contains a vertex in a specified stable set

Let G be a graph with order n, and let k be an integer with 1 ≤ k ≤ n/3. In this article, we show that if σ2(G) ≥ n+ k− 1, then for any stable set S ⊆ V (G) with |S| = k, there exists a 2-factor with precisely k cycles C1, . . . , Ck such that |V (Ci) ∩ S| = 1 for all 1 ≤ i ≤ k and at most one of the cycles Ci has length strictly greater than three. The lower bound on σ2 is best possible.

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2004

ISSN: 0012-365X

DOI: 10.1016/j.disc.2003.05.004